Number of subarrays with bounded maximum¶
Time: O(N); Space: O(1); medium
We are given an array A of positive integers, and two positive integers L and R (L <= R). Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L and at most R.
Example 1:
Input: A = [2, 1, 4, 3]; L = 2; R = 3
Output: 3
Explanation:
There are three subarrays that meet the requirements: [2], [2, 1], [3].
Notes:
L, R and A[i] will be an integer in the range [0, 10^9].
The length of A will be in the range of [1, 50000].
[1]:
class Solution1(object):
def numSubarrayBoundedMax(self, A, L, R):
"""
:type A: List[int]
:type L: int
:type R: int
:rtype: int
"""
def count(A, bound):
result, curr = 0, 0
for i in A :
curr = curr + 1 if i <= bound else 0
result += curr
return result
return count(A, R) - count(A, L-1)
[2]:
s = Solution1()
A = [2, 1, 4, 3]
L = 2
R = 3
assert s.numSubarrayBoundedMax(A, L, R) == 3